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THE TWO-DIME2TSIOKAL INCOMPRESSIBLE POTENTIAL FLOW 

OVER COBEUGATED AID DISTORTED BSFINITE SURFACES 

By W. Perl and L. J. Green 

SUMMARY 

The two-dimensional incompressible potential flow over corru- 
gations and "bumps of arbitrary shape is derived by conformal trans- 
formation. The results are compared with those obtained by the 
methods of thin-airfoil theory. Some discussion is included of the 
flow over bumps that protrude both inward and outward from a wall. 

lEETRODUCTION 

Analyses of the effects of local surface distortions on the drag 
and the critical speed of airfoils usually begin with a consideration 
of the two-dimensional incompressible potential flow over a surface 
having these distortions. In reference 1, for example, the well- 
known approximate methods of thin-airfoil theory are applied to the 
calculation of the velocity distribution over periodic corrugations 
and Isolated bumps of sinusoidal shape. 

In this paper the ideal flow past such shapes is derived by more 
exact conformal mapping methods of W. Perl of the MCA staff, particu- 
larly inasmuch as the numerical application of these methods is almost 
as simple as that of the approximate methods of thin-airfoil theory. 
The results are compared with those obtained by thin-airfoil theory. 
Some incidental discussion of the conditions at a cusped edge and 
of the mapping of bumps that extend both inward and outward from a 
wall is also given. 

The analysis in this paper was begun at Langley Memorial Aero- 
nautical Laboratory and completed at the Aircraft Engine Research 
Laboratory of the MCA at Cleveland, Ohio. 
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THE FLOW OVER A CORRUGATED SURFACE 

Consider a corrugated surface, all the cross sections of which 
parallel to a fixed plane are the same, having infinite length and 
arbitrary "but periodic shape. It is desired to find the velocity 
distribution produced along the surface by an ideal incompressible 
fluid moving parallel to this plane. The free-stream velocity suf- 
ficiently far from the corrugation is assumed to be constant, par- 
allel to the axis of periodicity of the cross section, and of 
magnitude unity. 

The problem is solved by finding the conformal transformation 
between points of the corrugation (actually the cross section), 
taken as periodic about the 0-axis of a z-plane, and points of a 
straight line, taken as the 0-axis of a £-plane (fig. l). The 
Cartesian mapping function (CMF), which relates conformally corre- 
sponding pairs of points in the two planes, is defined as the vector 
difference z - £ between such pairs of points. 
Thus 

z = ty + i0 

z - £ = ß - ie = (\|f - v0) - I (0 - e) 

The various quantities are defined in figure 1. 

The Clv!F z - £ can be regarded as a function that is regular 
everywhere outside a circle by virtue of the transformations 

z = log p1 (2a) 

I  = log p (2b) 

in which the coordinates of    p'    and    p    are 

p'  = e^ 
\i'n+i0 

p    = e 

Equation (2a) transforms the semi-infinite periodic strip in the 
z-plane, bounded by 3 = 0, 9  = 2JI, and the corrugation ty(P), 
into the entire region outside the p'-plane near circle that corre- 
sponds to the corrugation. The corrugation given by the Cartesian 
coordinates tj/ and G    in the z-plane is represented in the p'-plane 

,. _ y+w 
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by the near circle with polar coordinates e^ and 0. Similarly, 
equation (2"b) transforms the semi-infinite periodic strip, "bounded 
"by 0 = 0, 0 - 2%,    and. the 0-axis (^Q = 0), into the entire 
region outside a unit circle in the p-plane. The CMF z - t    "becomes 
a function that is regular everywhere outside the p-plane unit 
circle and is therefore expressible by an inverse power series . 

z - t  »log (p'/p) S~S\ 
L.V 

(3) 

wherein the constant term, representing a relative translation 
between the z-plane and the £-plane, has been made zero. The trans- 
format ion log (P'/P) ^n equation (3) has been used in reference 2. 
On the boundaries equation (3) becomes, with p = e1^ and 
cn = an + ibn, 

00 CO ""'S 

^(0)  = 2_Jan cos n$ + y )^-n sin n0 
1 1 

} (4) 
~e(0) = /__/bn cos n0 - ^_,an sin n0 j 

1 1 J 
The mapping function \J/(0) - ie(0) for a given boundary ^(0) 

can be obtained from equations (4). Conversely, special families 
of corrugations are obtained by selecting various harmonics in equa- 
tions (4); for example, a simple type of corrugation is given by 

jtT \j/(0) = _ £i cos 0 

6(0) = - f sin 0 

0(0) = 0 - e(0) = 0 + f-  sin 0 

(5) 

where T/2 is the thickness ratio of the corrugation, defined, as 
the total height h (fig. 1) divided t)j the wave length 2K; the 
quantity T is thus analogous to the thickness ratio 
(maximum thickness/chord) of airfoil sections. The members of this 
family (equations (5)) corresponding to T=0, 0.1, 0.2, and 0.3 

are plotted in figure 2 as -m/o against 0. 
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Once the mapping function of a corrugation is known, the veloc- 
ity v at any point on the surface is given oj the product of the 
velocity on the straight-line boundary, which is unity, and the 
stretching factor |d£/dz|  from the straight line to the corruga- 
tion; thus, by use of equations (l), 

dzl 
1 • 

dty + idö 

V — „ 

id0 

1 (6) 

ij 

Tor the special family of corrugations given "by equations (5) 
the velocity distribution reduces to 

Av 
jtT/2 

v-1 
«T/8 

2_ - 1 

/I (T; -5- JtT COS 0 

(7) 

As T—> 0, ty   and Av also—•> 0, but 

- cos 9. These limiting values agree with 

Figure 3 shows the velocity distributions of members of the special 
family shown in figure 2. 

both -^72 and ^ > 

the thin-airfoil results obtained by Allen (reference 1). 

In the general case of a given arbitrary corrugation \|/ (9), 
the CMF "^(/J) — i£"(0) can be determined by successive approxima- 
tions. Suppose, for example, that the zeroth approximation to the 
corrugation \!/(9) is the straight line i'0(fi)  - i£o(0) = 0. The 

first-approximation ordinates ^-,{fi),  corresponding to a set of 
evenly spaced 0 values, are then obtained from the given boundary 
at the abscissas 9Q = $.    The function £i(0), conjugate to 
ty±(fi),    is determined ~by harmonic analysis and synthesis in accord- 
ance with equations (4). The resulting first-approximation 
CMF ^(0) - i£]_($) yields the coordinates ^(0), 0i(0) =0-^(0) 
of a boundary, which is compared with the given boundary. If the 
agreement is not satisfactorily close, the procedure is repeated; 
the second-approximation ordinates ~i'9($)    corresponding to the same 
set of evenly spaced 0 values, are obtained from the given boundary 
at the abscissas 9-^{fi)  = $ — £-j_(j?5), etc. 
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As an example of the general procedure and for comparison with 
the results of Allen (reference l) in the case of nonnegligihle thick- 
ness, a cosine corrugation with a thickness ratio of 0.2 was taken 
as  ty = — y-r cos 9. The zeroth approximation was chosen as the 
special corrugation T = 0.2 cf figure 2. The maximum difference 
in ordinates of the two surfaces was 30 percent. After the first 
approximation the maximum difference between the ordinates of the 
given cosine corrugation and the first-approximation boundary was 
reduced tc about 4 percent. A second and a third approximation 
further reduced the difference to 1 and 0.25 percents, respectively. 
The resulting CMS? and the velocity distribution for the third, 
approximation are given in table 1. Figure 4 shows this velocity 
distribution as well as the approximate velocity distribution based 
on thin-airfoil theory. As was demonstrated by Allen, the approxi- 
mate velocity distribution is a cosine distribution. 

The results obtained by the two methods for a thickness ratio 
of 20 percent differ appreciably; the maximum difference is about 
16 percent of the maximum increment of velocity over the free-stream 
value. In the range of thickness ratios contemplated by Allen, how- 
ever, the results of thin-airfoil theory are undoubtedly of sufficient 
accuracy, as far as incompressible potential flow is concerned. 

THE FLOW OVER A BUMP 

Consider a surface that is perfectly flat except for an isolated 
bump or a disturbance of constant chord length and infinite span; 
assume the flow over the surface to be at right angles to the span 
and of magnitiide unity sufficiently far from the bump. A two- 
dimensional symmetrical flow is obtained by reflecting the bump in 
the plane surface. This problem is solved ~bj  conformally mapping 
the symmetrical section, taken in the z-plane, into its axis of 
symmetry, taken in the {-plane. The coordinates in the two planes 
are (fig. 5) 

~\ 
z = x + iy j 

(8) 
t = % + iT) 

The CMF z - £ becomes a function regular in the exterior of a 
circle  |pj = E as a result of the Joukowski transformation 
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and can be expressed as an inverse power series 

0) 
0 * 

For corresponding points on the "boundaries in the z~,    £-, and 
p-planes, 

CO QP      -u 

Az(^) =2 #*cos n^ +2 i§sin n^ 
0 

CO 

> 

Ay(iz5) = 2 ^cos n^ - 2 ^sin ^ 
0 0 

do) 

x(0)  = r cos ^ + Ax(0) (r = 2S) 

The velocity v at any point of the symmetrical section is the 
product of the velocity at the corresponding point of the circle 
|p| = E and the stretching factor jdp/dz|. The result is 

v = 
sin 0 

'\/(sin * - ii) 2 + (&äAz 
(ii) 

The sections under consideration are now assumed to he symmetrical 
with respect to both the coordinate axes and to have a horizontal 
tangent at their chordwise extremities on the x-axis. The Fourier 
series (equations (10)) are thereby simplified; symmetry with 
respect to the x-axis requires that bn = 0, and symmetry with 

respect to the y-axis requires the vanishing of even harmonics. 
Hence, 

NT1 an    A äx = /   —=  cos n0 

GO 

^sP "it A Ay = - > -— sm n0 
^_J Bn r 

1 

"> (n odd) 

(12a) 

(12b) 
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The condition that the section have a horizontal tangent at the 
chordwise extremities, that is, 

03 

JT' na^ cos n0 

dy   1 
dx 

r sin 0 +2 nan sin n0 
1 

he zero for 0 = 0, is satisfied if 

03 

2nan = 0,-       r+2n2an/0 (13) 
1 1 

A simple example of a family of "bumps satisfying conditions (13) 
is given "by 

Ax = - -r T (cos 0 - 3 cos 30J 

• V (14) 

Ay = | T (sin 0 - | sin 30 ) 

(l - j\ cos 0 +| cos 30 (15) x 

where the value of r has "been so adjusted that the chordwise 
extremities of the section are at x = +1. The thickness ratio T 
is defined as twice the height of the bump divided "by its length 2. 
The "bumps given "by equations (14) and (15) are shown in figure 6(a) 
for T = 0, 0.1, 0.2, and 0.3. The family of symmetrical sections 
shown in this figure was derived "by Kaplan in reference 3 "by a 
generalization of the Joukowski transformation. The corresponding 
velocity distributions are shown in figure 6(h). 

The velocity distribution on the wall (that is, for  |x| >1, 
y = 0) can be obtained from the general expression for the velocity 
at any point in the plane outside the section; thus, for an arbi- 
trary airfoil situated at an angle of attack a in a free stream 
of unit velocity, the expression for the derivative wz of the poten- 
tial function in the airfoil z-plane is 

yp 
Wz  dz/dp 



where Wp is the derivative of the potential function in the circle p-plane. If p. is 
•written in the form 

> 

evaluation of Wp and dz/dp yields the following formulas for the magnitude vz and the 
direction II of the velocity vector in the airfoil plane: 

w2 = vz e 
•in 

vz = 

sinh Q cos (0 + a) + cosh Q sin (0 + a) + sin (a + ßjO 

fc, 

ian II = 

(sinhQcos0+||)[; 

cosh Q sin 0 - %f) + (eiah 0 cos 0 + ^ 

(0+a) fc coshÜsin(0+a)+sin(a+ßrp) -sinhÜ cos oshQ sin0 
3AxS 
r30/ 

-<<sinhQcos(0+a) fsinhQ cos 0 +-2=^A +fcoshü sin0-i^~J coshQsin(0+a)+sin/a+ßTH 

where ßT is the zero-lift angle. 

For a symmetrical flow and section, a = ßj = 0; whereas, for points ;>n the wall, 

0 = SAZ/O^ = 0. Equation (17) thus reduces to 
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(^wall 7^-7— <19> 

The value of (x~r) for arbitrary 'Qs£Q is obtained "by differen- 

tiating equation (12b), replacing E with e*, and using for an 
the values .previously determined for the section. 

The conformal transformation of a sinusoidal "bump "was next 
determined "by the method of successive approximations outlined in 
the preceding section. The thickness ratio T was taken to "be 
0.2, so that the symmetrical section has the equation 

y = +0.1 (1 + cos it x) (-1<X<.1) (20) 

The symmetrical section of figure 6(a) with T = 0.2 was chosen as 
the zeroth approximation. Two approximations were carried out. The 
maximum differences "between the ordinates of the given "boundary 
(equation (20)) and the successively derived "boundaries were about 
5, 1.5; and 0.25 percent for the zeroth, the first, and the second 
approximations, respectively. Table 2 contains the data for the 
second approximation and figure 7 shows the velocity distribution 
over bump and wall. The approximate result of Allen, obtained on 
the "basis of thin-airfoil theory, is also shown in figure 7. The 
maximum difference between the two curves is about 8 percent of the 
maximum increment of velocity over the free-stream value. This 
difference, it should be remembered, is for a 20-percent thickness 
ratio; for the very small thickness ratios considered by Allen, 
thin-airfoil theory is quite adequate. 

Figures 6 and 7 show that the velocity distribution in the 
neighborhood of the point where bump meets wall merits discussion. 
A symmetrical section can become tangent to the wall in any one of 
three ways: with infinite curvature, aero curvature, and finite 
nonzero curvature, The case of infinite curvature, properly called 
a cusp, holds for the special family of sections given by equa- 
tions (14) and (15) and also for the trailing edge of a symmetrical 
Joukowski airfoil. The velocity curve corresponding to both bump 
and wall has a minimum value at the cusp; the velocity gradient at 
the cusp is finite on the bump side and infinite on the wall side 
as indicated in figure 6(b). See reference 4 for a comparison with 
experiment. 

Zero curvature is obtained at the sharp edge of the symmetrical 
section if, in addition to conditions (13), the following equation 
holds: 
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CO 

2X an = ° 
1 
t 

The velocity curve in this case has a minimum at seme poinb on the 
bump and the velocity gradient is continuous at the point where the 
section meet3 tile wall. 

The section obtained ~bj reflecting the cosine bump in the wall 
has finite nonzero curvature at its sharp edge. The velocity is a 
minimum at a point on the bump, as seen in figure 7, but the conti- 
nuity of the velocity gradient at the sharp edge is, from the cal- 
culations of this paper, still an open question. It is conjectured 
that, at a sharp edge of this type, the velocity gradient has a 
finite discontinuity. 

EEEEEIQE-IHEERiaR BUMPS 

The flow over a bump has been derived in the preceding section 
by reflection of the bump contour in the wall and analysis of the 
resulting symmetrical section. If an exterior-interior bump, namely, 
a distortion of part of a wall in both directions perpendicular to 
the wall, is reflected in the wall, a symmetrical figure-eight sec- 
tion results, as indicated in figure S. The mapping of such a con- 
tour onto a circle can be accomplished as previously described. 
It appears, hot-fever, that the derivative dz/dp of the transforma- 
tion will be zero at a point outside the circle corresponding to a 
point within the loop consisting of the interior part of the b'wp 
contour and its reflection. That srch a zero must exist becomes 
evidenb upon tracing the paths around the figure-eight contour 
corresponding to concentric circles larger than the basic circle. 
As indicated schematically in figure 3, the transition contour 
between those of figure-eigho type and those simply connected has a 
sharp-edged extremity at the point F inside the loop formed "oj the 
interior part of the bump contour and its reflection. At this 
sharp edge, dz/dp = C. Although this property of a looped contour 
might be useful, for example, in locating the singularities of a 
mapping function, this method of attack does not yield the desired 
flow over the exterior-interior bump (the flow actually obtained is 
that whose zero streamline is the path ABCDSJGH in fig. 8). It may 
be noted that the conventional application of thin-airfoil theory 
also breaks down in this case. 

The flow over an exterior-interior bump can be obtained by 
mapping the bump and the wall contours onto an infinitely long 
straight line. Points on the bump contour are related to points on 
the straight line oj  the CMP. 
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z - £ = Ax + iAy 

a3 indicated in figure 9, and points on the straight line are related 
to points on the unit circle "by the "bilinear transformation, which 
for the problem under consideration is taken as 

£ = i (.HJI4) (21) 

Equation (21) transforms the upper half £-plane into the region 
exterior to the unit circle; corresponding points of "both regions 
are shown in figure S. For points on the boundaries, the inverse- 
povrer-series expression for z - £ (equations (9) and (21)) yields 

Ax = 2 an cos n0 + 21 ^n sin n0 
0* o' 

Ay = 2 ^n cos n0 - 2 an sin n0 
0 0 T (22) 

x = l  + Ax = tan 90° ~ ^ + Ax(0) 

y = Ay 

The velocity distribution at the surface of the "bump is obtained 
from the complex -velocity function wz: 

"W 

wz = 
1_ 

dz te        ! + 
d (z - 5 V*P    i .   (i + ain 0)    (^ + i ^A 

d£        -1 +        d£/dp X       ^X + Sin ^    Vd0 d0 y' 

The absolute magnitude of the velocity v is therefore given "by 

v = 

1 - (1 + sin 0) dAx 
i2 

d0_ 
(1 + sin 0) ^2 

d0 j 

As a simple example of an exterior-interior "bump, the family 
represented "by 
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&x  = b sin $ 

Ay = y "= b cos 0 

2 = tan  ~ ^ + "fa sin jö 

is illustrated for various valy.es of b, together -with the corre- 
sponding velocity distributions, in figures 10 and 11. By the 
neöhods previously described and also by superposition of solutions 
~bj linear combinations of CMT's, arbitrary distortions of a straight 
•wall say be analyzed or synthesized. 

COECUJSIOll 

The velocity distributions on corrugations and bumps as deter- 
mined hj  conformal transformation are, in the case of 20-percent 
thickness ratio, appreciably different from the corresponding results 
by thin-airfo-j 1 theory. The maximum differences, expressed a3 frac- 
tions of the maximum increment of velocity over free-stream velocity 
produced by the disturbance, amount to approximately IS percent for 
a sinusoidal corrugation of 2C-percent thickness ratio and 3 percent 
for a sinusoidal bump of the same thickness ratio. In the limit of 
zero thickness ratio, the results ~bj  conformal transformation are 
identical irith the results hzr thin-airfoil theory. 

Aircraft Engine Research Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio. 
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TABIE 1» - CMF AI© VELOCITY DISTRIBUTION FOR COSH© CORRUGATION 

t (thin- 
(radians) 

V 0 dy de airfoil 
£ 

6.0 60 
V theory, 

refer- 
ence l) 

0 -o. 31I.2 0 0 0 -O.UU12 0.6939 0.6858 
TT/12 -.2925 -.1118 .3736 .1607 -.3996 .7098 .7075 

TT/6 -.231*3 -.2038 .727U .2729 -.2971 .751*1* .7651* 
nA -.1551 -.2659 1.0^13 .3228 -.1776 .8191 cSliUo 
TT/3 -0O693 -.2981 1.3U53 .3272 -.0718 .892U .9298 

5 ir/12 .01U1 -.3051* I.63J1U ,3068 .0128 .9673 1.0137 
rr/2 .0901; -.2930 1.8638 .271*7 .0789 l.OiiOlj LO907 

7 ff/12 .1573 -.2652 2.0978 • 235U .1315 1.1113 1.1580 
2 TT/3 .2153 -.2253 2.3197 .1916 .1716 L1760 1.2139 

3 TT/U .2573 -.1762 2.5321* .11*1*7 .2013 1.2320 1.2576 
5~/6 .2839 -.1208 2.7387 .0966 .2207 1.2736 1.2890 

11 ff/12 o3079 -.0613 2.91*11 .Oh82 .2320 1.2996 1.3079 
Tf .311*2 0 3.iia6 0     i »2353 1.3077 1.311*2 

National Advisory Committee 
for Aeronautics 
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TABLE 2. - CMF Aiffi) VELOCITY DISTRIBUTION FOR COSH® BUMP 

0 
(radians) Q Ax Ay X 

80 
3&y 
30 

V 

TT/2 0 0 0.2000 0. 0.3061). 0 1.3901 
h tr/9 0 -.0523 .1910 .1373 .2866 .1021 1.3522 

7 ff/lö 0 -,0978 .1651 .2756 .2282 ol907 1.2509 
ff/3 0 -.1299 .1262 .Ul?9 .13U7 .2U86 l.llli9 

5 ir/18 0 -.1U56 •081U .5581 .0217 .2538 .9801 
2 IT/9 0 -.1386 .010.3 .6977 -.0718 .1963 -8793 

TT/6 0 -.1033 .01ii9 .8)422 -,io5U .1063 .8272 
TT/9 0 -.1053 .0031 .9207 -.0815 .0350 ,8183 

ff/18 0 -,09\9 .0002 .9803 -00373 .00UU .835U 

v/36 0 -.092? .0000 .9951 -.0173 .0006 .8)461 
0 oO£ -.0915 0 1.0016 0 .0093 .85U7 
0 .10 -00908 0 1.006U 0 e0178 .8598 
0 .20 --.0883 0 1.0253 0 .0318 .8735 
0 .30 -.08)4.6 0 1.0566 0 .0lll6 .8889 
0 J.-,o -.0801 0 1.1001 0 .0)476 .90I4.O 
0 ,50 -.0752 0 1.1559 0 .0508 .9180 
0 .60 -.0700 0 1.22U2 0 .0518 .9306 
0 .70 -,06h9 0 1.3055 0 .0515 .9U17- 
0 ,80 -.0598 0 I.I1.003 0 .01*97 .9512 
0 .90 -.0550 0 1.5096 0 •Oltfli .9591; 
0 1.00 -.0503 0 1.63U3 0 ooui-8 

  
.9663 

.      . . ... 

National Advisory Committee 
for Aeronautics 
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NACA ARR NO. E5A05 Fig, §b 

£2 
5? 

-1.0      -.8 
Distance,x 

(b) Velocity distributions. 
Figure 6.- Concluded. 



COM 
NATI 
MITT 

DNAL 
EE  FC 

AOVI 
)R  AE 

SORY 
RONA UTIC S 

/ 

/•' 

• if 
if 

f 

if 
il 
il 

i 
/1 
i1 

11 
11 

i 
i 1 

Exae ; the >ry i 
i 

  Thin •airf >il t leory (ref. irenc 1) i i 
i I 
i / 
t / 
t 1 

• 

/ 
> j 

/ 
" / / 

> ) 
i I 

i I 

—^"~ 
•**^*****«. 

"•V 

i 

// 

l i '/ 

1 
1. / 

-1.8      -1.6     -1.4      -1.2      -1.0      -.3      -.G 
Distance,x 

2.0 

1.6 

1.2 

.8 

.4 42 

-.4 

-.8 

-.4      -,2 0 

Figure 7. - Comparison of veloolty distributions for cosine bumps. 

1-1.2 

o 
s> 

3> 
SO 
SO 

m 
oi 
j> 
o 
VI 

* 

-4 
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